Odell Dam Safety Analysis Final Presentation

By:

Ibrahim Atout - Sharlot Eisentraut

Yaowan Ma - Chandler Hammond

Braedan Hinojosa

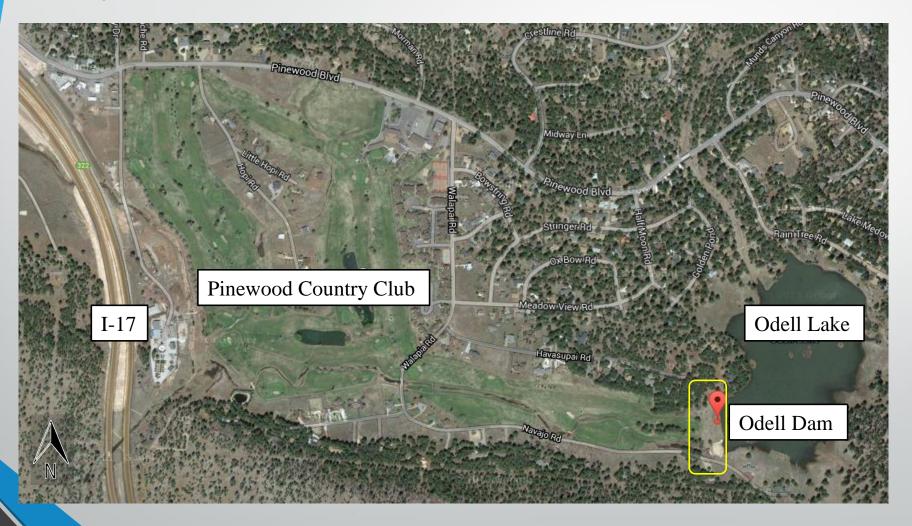
1

CENE 486C - Capstone - Final Presentation - 12/5/14

Overview

- Project Description
- Project Background
- Project Location
- Technical Analysis
- Summary of Results
- Cost
- Final Recommendations

Project Description


- Dam Safety Analysis
- The team has been asked by the client to provide qualitative answers for the following:
 - What storm event will contribute to a dam failure?
 - Determine the adequacy of the spillway capacity and side slope stability.
 - Discuss the effects of post-fire flooding.

Project Location

- Munds Park
- 20 miles south of Flagstaff
- Pinewood Country Club

Project Location

Project Background

• Client:

6

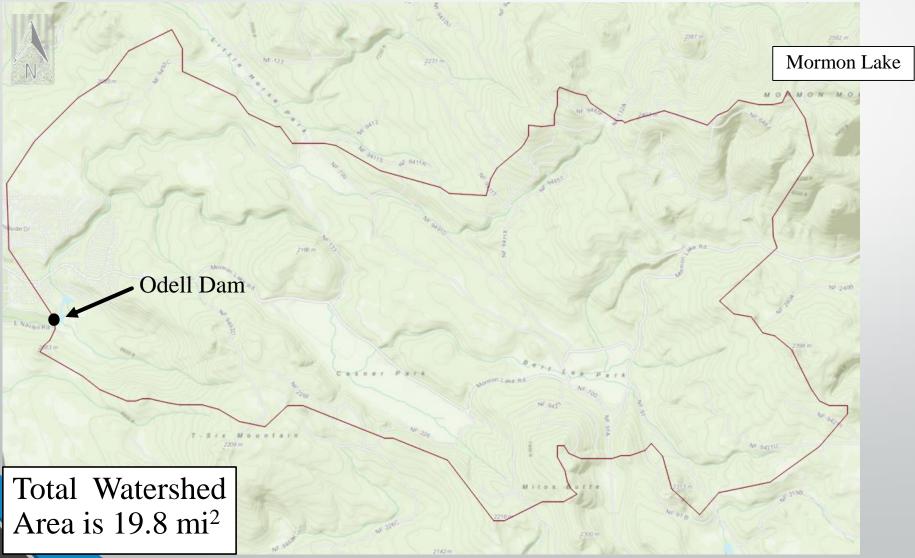
Pinewood Country Club

Technical Advisor:Dr. Charles Schlinger

 ADWR Dam Status: Safe with deficiencies

Photo taken by: Braedan Hinojosa

Technical Analysis


- Watershed Delineation
- Rainfall Intensities
- Storage Indication Curve
- Curve Numbers

7

- Time of Concentrations
- PondPack Modeling
- RocScience Modeling

Watershed Delineation

8

Braedan Hinojosa

Rainfall Intensities

AMS-based precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration	Annual exceedance probability (1/years)									
	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/1000	
5-min	3.73	5.42	6.64	8.29	9.61	11.1	12.6	14.7	16.6	
	(3.19-4.36)	(4.63-6.30)	(5.65-7.72)	(7.00-9.60)	(8.06-11.1)	(9.18-12.8)	(10.3-14.6)	(11.9-17.2)	(13.2-19.6)	
10-min	2.84	4.13	5.05	6.31	7.31	8.41	9.55	11.2	12.6	
	(2.43-3.31)	(3.52-4.80)	(4.30-5.87)	(5.33-7.30)	(6.14-8.46)	(6.98-9.74)	(7.84-11.1)	(9.03-13.1)	(10.0-14.9)	
15-min	2.34	3.41	4.18	5.22	6.04	6.95	7.90	9.26	10.4	
	(2.01-2.74)	(2.91-3.96)	(3.55-4.86)	(4.40-6.04)	(5.07-6.99)	(5.77-8.05)	(6.48-9.16)	(7.46-10.8)	(8.27-12.3)	
30-min	1.58	2.30	2.81	3.51	4.07	4.68	5.32	6.24	7.02	
	(1.35-1.84)	(1.96-2.67)	(2.39-3.27)	(2.97-4.06)	(3.41-4.71)	(3.89-5.42)	(4.36-6.17)	(5.03-7.29)	(5.57-8.29)	
60-min	0.978	1.42	1.74	2.17	2.52	2.90	3.29	3.86	4.35	
	(0.837-1.14)	(1.21-1.65)	(1.48-2.02)	(1.84-2.52)	(2.11-2.91)	(2.41-3.36)	(2.70-3.82)	(3.11-4.51)	(3.45-5.13)	
2-hr	0.554	0.789	0.961	1.20	1.39	1.60	1.83	2.15	2.43	
	(0.486-0.638)	(0.690-0.906)	(0.834-1.10)	(1.03-1.37)	(1.19-1.59)	(1.36-1.84)	(1.53-2.09)	(1.76-2.47)	(1.95-2.80)	
3-hr	0.404	0.558	0.673	0.830	0.957	1.10	1.25	1.47	1.65	
	(0.359-0.460)	(0.494-0.634)	(0.592-0.763)	(0.725-0.940)	(0.829-1.08)	(0.942-1.25)	(1.06-1.42)	(1.22-1.68)	(1.35-1.90)	
6-hr	0.254	0.339	0.401	0.487	0.555	0.631	0.708	0.816	0.905	
	(0.230-0.283)	(0.305-0.377)	(0.360-0.446)	(0.434-0.541)	(0.491-0.616)	(0.553-0.701)	(0.612-0.789)	(0.694-0.915)	(0.757-1.02)	

• NOAA Atlas 14 Volume 1 Version 5.

Sedona, Arizona, US. Latitude: N 39.9334° Longitude: W 111.6335°

Precipitation Intensity, Annual Maximum, Project area: Southwest

Curve Numbers

- Based on the area's hydrologic soil group, land use, treatment and hydrologic condition.
- Pre-Burn: Oak Creek Flood Warning Study 1990
 - Determined to be 66
- Post-Burn: USDA Forest Service [2]
 - Determined to be 85

[1] National Engineering Handbook, Section 4, Hydrology, U.S. Department pf Agriculture, Soil Conservation Service, 1972.

[2] U.S. Forest Service Coronado National Forest. 2003. Aspen Fire, Coronado National Forest, BAER hydrology report. Tucson, AZ: U.S. Department of Agriculture, Forest Service, Southwestern Region, Coronado National Forest.

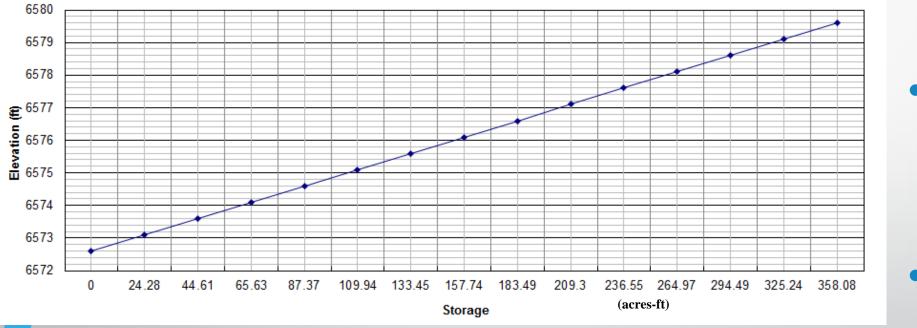
Time of Concentration

• SCS Lag Method

Scenario	Length (feet)	Slope (%)	CN	Tc (hours)	
Pre-Burn	63212	13.18	66	.819	
80% Post-Burn	63212	13.18	85	.563	

$$t_c = \frac{1.67 * L^{0.8} (\frac{1000}{CN} - 10)^{0.7}}{1900 * S^{0.5}}$$

- Watershed: 1269 acres
- CN = SCS runoff curve number
- S = average watershed slope
- L = Longest flow path

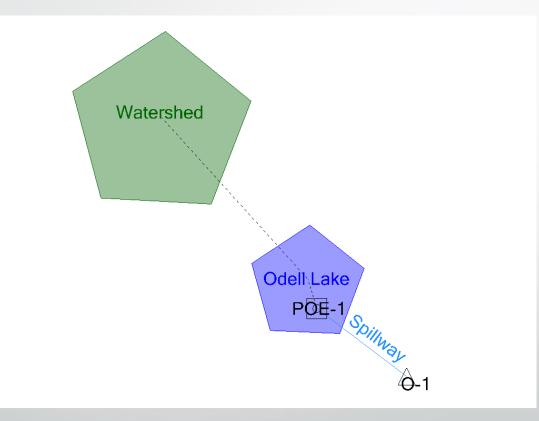

PondPack Hydrologic Modeling

- Parameters
 - Watershed Delineation
 - Area: 19.84 sq. miles
 - Time of Concentrations
 - Pre-burn: 49.14 minutes
 - Post-burn: 33.78 minutes

- Curve Numbers
 - Pre-burn: 66
 - Post-burn: 85
- Analyzed as a full reservoir

Storage Indication Curve

Elevation-Storage Graph for Odell Dam


Spillway Dimensions

- Length: 80 ft
- Height: 7 ft
- Spillway Capacity
 - ~ 4500 cfs

ADWR Multiple Sources. "Correspondence June 86 - March 07." Arizona Department of Water Resources. N.d.

Storage from crest of spillway to top of dam.


PondPack Hydrologic Modeling

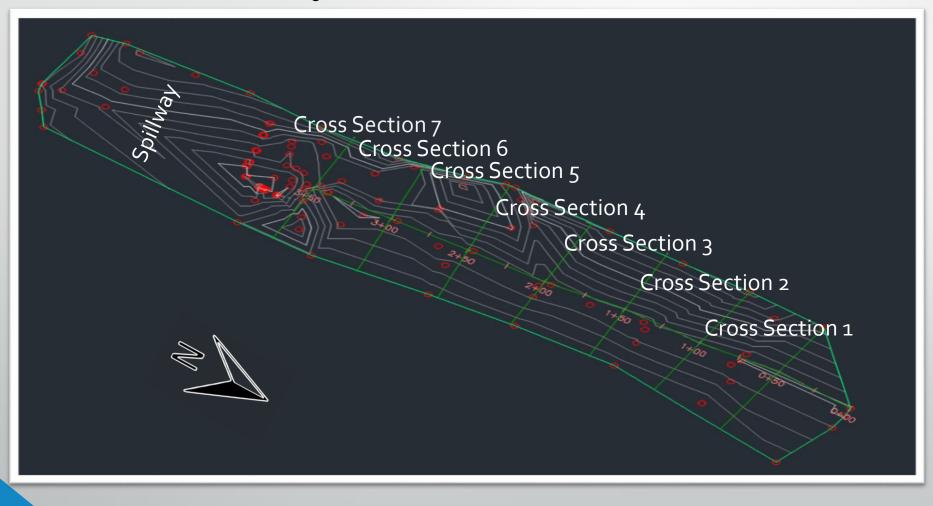
200 Year Hydrograph

500 Year Hydrograph

Chandler Hammond

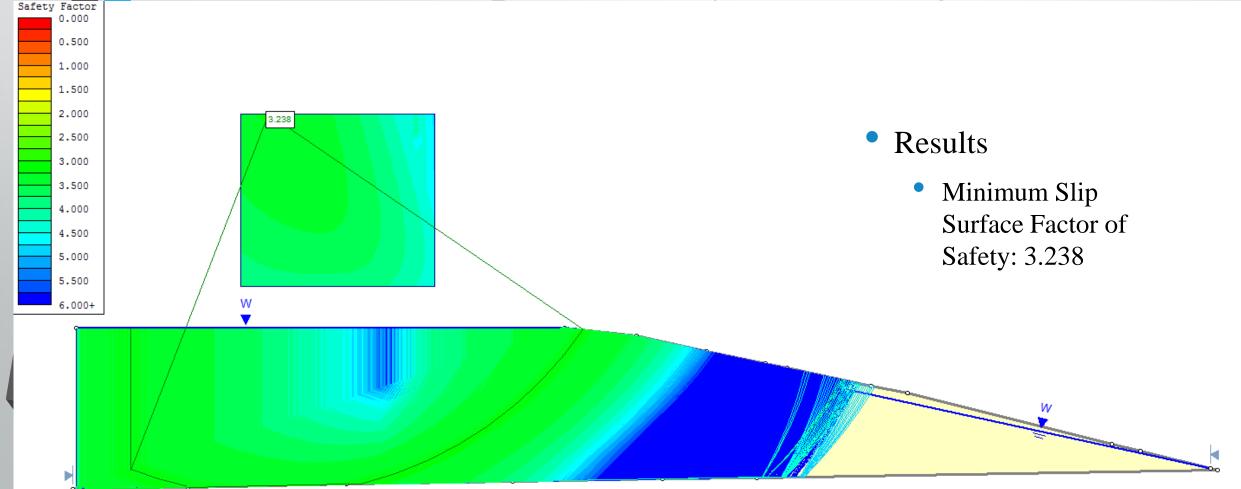
1000 Year Hydrograph

Inflow vs. Outflow


	Pre-burn Conditions			Post-burn Conditions			
Storm Events	Peak Inflow (cfs)	Peak Outflow (cfs)	Spillway Adequate?	Peak Inflow (cfs)	Peak Outflow (cfs)	Spillway Adequate?	
2 Year	281.07	204.73	Yes	3443.26	1519.19	Yes	
5 Year	538.79	411.23	Yes	6900.47	3167.07	Yes	
25 Year	2914.50	1457.56	Yes	15484.56	N/A*	No	
50 Year	4530.26	2401.13	Yes	19860.76	N/A*	No	
100 Year	6617.25	3614.45	Yes	24891.91	N/A*	No	
200 Year	9073.63	N/A*	No	30404.36	N/A*	No	
500 Year	13164.09	N/A*	No	38575.88	N/A*	No	
1000 Year	17056.60	N/A*	No	45669.15	N/A*	No	

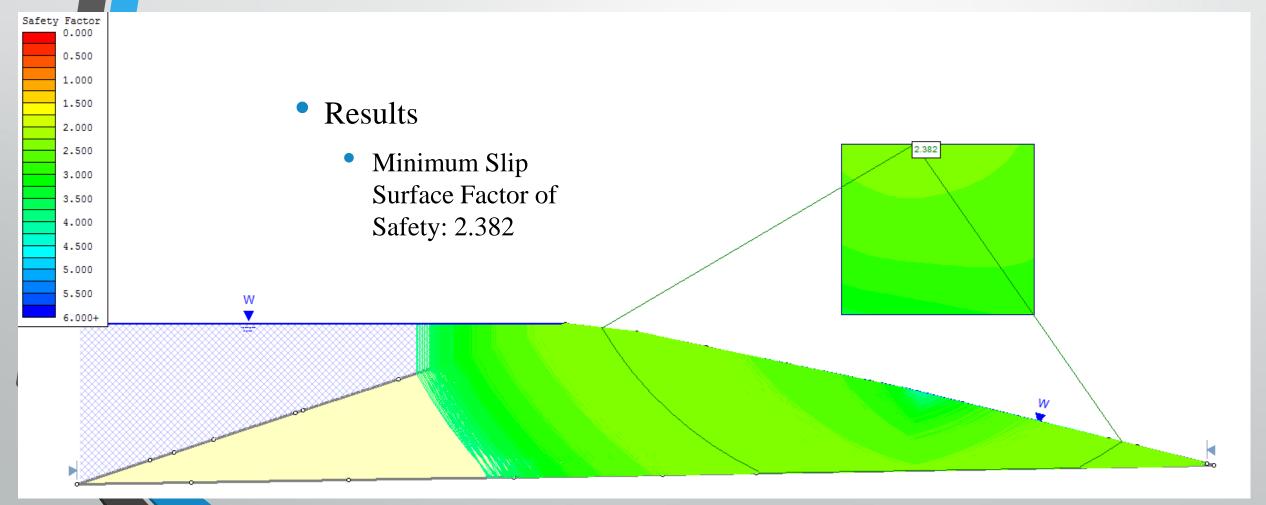
*Spillway Overtops

RocScience Slope Stability Modeling


- Program is used to determine side slope stability of the dam.
- Parameters for Analysis
 - Dam Cross Section
 - Cohesion: 130.0 psf
 - Friction Angle: 25.1 Degrees
 - Saturated Weight of Soil: 120.0 pcf
 - Unsaturated Weight of Soil: 106.1 pcf
 - Side slope Factor of Safety ≥ 1.5
 - Analyzed with water level at top of dam

Dam Geometry

Ibrahim Atout


RocScience Slope Stability Modeling

Heel (Right) to Toe (Left)

Ibrahim Atout

RocScience Slope Stability Modeling

Ibrahim Atout

What storm event will contribute to a dam failure?

• Spillway Overtopping

Scenario	Storm Event	Peak Inflow (cfs)
Pre-Burn	100 to 200	6617 to 9073
80% Post-Burn	5 to 25	6900 to 15484

Determine the adequacy of the spillway capacity and side slope stability.

• Side Slope Stability – Stable

Stability Model	Min. Factor of Safety	Stable?
Heel to Toe	3.238	Yes
Toe to Heel	2.382	Yes

- Spillway Capacity
 - Max Outflow ~ 4500 cfs

Scenario	Storm Event	Outflow (cfs)		
Pre-Burn	100 Year	3614.45		
80% Post-Burn	5 Year	3167.07		

Discuss the effects of post-fire flooding.

- Time of Concentration decreased
 - Exponential increase in water runoff generated
- Debris from watershed accumulates
 - Decreases reservoir storage capacity
 - Raises stresses on the dam
 - Potential to block spillway

Cost

Task Hours	Task								
Team Member	Management	Lit. Review	Surveying	Geotech.	Hydrologic	RocScience	PondPack	Reporting	Total
Braedan	25	15	10	8	20	0	20	32	130
Chandler	13	15	10	6	6	0	40	30	120
Sharlot	17	32	5	6	0	0	0	20	80
Ibrahim	13	12	5	20	0	30	0	20	100
Yaowan	13	12	5	20	0	10	0	20	80
Cost – Billable Rate - \$75/hr									
Total Hours	81	86	35	60	26	40	60	122	510
Total Cost (\$)	6075	6450	2625	4500	1950	3000	4500	9150	38250

Final Recommendations

• We encourage our client, Pinewood Country Club, to look into previous ADWR recommendations to fix the minor deficiencies of the dam.

- ADWR Status: Safe w/ Deficiencies
 - Deficiencies are rodent holes, retaining wall and spillway cracks, and site management.
- Proper burn control to prevent severe burn conditions.

Questions?

• Thank you.

Photo taken by: Braedan Hinojosa